Назовите микробы чаще всего вызывающие инфекционный гепатит а

Переезд склада в Европу.
Реализуем препараты от гепатита С в России по закупочной цене - ликвидация склада
Перейти на сайт

Причины и условия развития инфекционного процесса:

1. Микроорганизм – возбудитель

2. Восприимчивый макроорганизм – хозяин

3. Условия внешней среды

Факторы, связанные с микроорганизмом:

1. Патогенность и вирулентность

2. Инфицирующая доза

3. Входные ворота

Патогенность — потенциальная способность того или иного микроорганизма вызывать инфекционный процесс.

Островки патогенности — фрагменты ДНК, кодирующие функции патогенности.

— Отличаются от хромосомной ДНК по % содержанию G+C.

— Отсутствуют в геноме непатогенных бактерий

— Способны к горизонтальной внутривидовой и межвидовой передаче

— Содержат гены, кодирующие детерминанты генетического обмена (транспозоны, интегроны, Is-последовательности)

— Составляют от 10 до 30 % генома (до 300 генов)

По патогенности микроорганизмы:

1. Облигатно-патогенные

2. Условно-патогенные

3. Непатогенные

Вирулентность –мера патогенности.

Единицы измерения: DL50, DLC, DLM, признак индивидуальный (штаммовый), динамичный и вариабельный.

По вирулентности микроорганизмы:

— Высоковирулентные

— Умеренновирулентные

— Слабовирулентные

— Авирулентные

Аттенуация – процесс искусственного стойкого снижения вирулентности. Лежит в основе создания живых вакцин. Разработан Л. Пастером.

Паразиты – гетеротрофные микроорганизмы, которые в процессе эволюции приобрели способность жить за счет живых тканей растений или животных, используя их аминокислоты, углеводы, витамины и другие соединения как источники питания или энергии. Паразиты могут быть облигатными, факультативными, внеклеточными и внутриклеточными.

Паразиты облигатные – микроорганизмы, полностью утратившие способность к сапрофитическому образу жизни и живущие за счет живых клеток. Высшей ступенью облигатного паразитизма является внутриклеточный паразитизм, свойственный некоторым патогенным простейшим, риккетсиям, микоплазмам, хламидозоа и вирусам. Эти микроорганизмы характеризуются обеднением ферментных систем вплоть до полной их утраты вирусами.

Паразиты факультативные – микроорганизмы, которые в зависимости от условий окружающей среды ведут себя как сапрофиты или как паразиты. К ним относятся возбудители ботулизма, столбняка, газовой гангрены, кишечная палочка и др.

Персистенция микробов в широком смысле слова означает способность переживать в опасном для них мире. Она обусловлена их резистентностью к защитным реакциям хозяина.

Механизмы персистенции микроорганизмов:

1. Факторы адаптации(конкуренция с нормальной микрофлорой):

— Выделение бактериоцинов

— Синтез индуцибельных ферментов

— Локальное изменение рН

2. Адгезины – факторы прикрепления:

— Пили

— Белки и тейхоевые кислоты клеточной стенки (у грам+)

— Капсульные полисахариды, белки наружной мембраны, ЛПС

3. Инвазины – факторы проникновения:

— Механический фактор (жгутики, активная подвижность)

— Биологическое проникновение (внутри макрофагов, с помощью переносчиков)

— Химические вещества (ферменты):

а) гиалуронидаза

б) нейраминидаза

в) фибринолизин и др.

4. Факторы подавления защитных сил организма:

— Антифагоцитарные:

а) капсула

б) подавление слияния фагосомы с лизосомой

в) продукция каталазы

— Антисывороточные:

а) капсульное вещество

б) белок А стафилококков (связывает Ig)

в) ферменты, разрушающие лизоцим, комплемент, Ig G, A и др.)

— Антигенная изменчивость

— Антигенная мимикрия

5. Факторы повреждения:

— Экзотоксины

— Эндотоксины

— Ферменты-токсины

6. Белки теплового шока – синтезируются в экстремальных условиях (при воздействии температуры), предназначены для защиты бактерий in vivo.

7. Суперантигены –

белковые молекулы, которые активируют иммунокомпетентные клетки (Т-лимфоциты) к продукции цитокинов – «цитокиновый шторм», шоковый синдром.

31,32 Патогенность — видовой признак, передающийся по наследству, закрепленный в геноме мик­роорганизма, в процессе эволюции паразита, т. е. это генотипи-ческий признак, отражающий потенциальную возможность мик­роорганизма проникать в макроорганизм (инфективность) и раз­множаться в нем (инвазионность), вызывать комплекс патоло­гических процессов, возникающих при заболевании.

Фенотипическим признаком патогенного микроорганизма является его вирулентность, т.е. свойство штамма, которое проявляется в определенных условиях (при изменчивости микроорганизмов, изменении восприимчивости макроорганизма и т.д.). Вирулент­ность можно повышать, понижать, измерять, т.е. она является мерой патогенности. Количественные показатели вирулентности могут быть выражены в DLM (минимальная летальная доза), DL« (доза, вызывающая гибель 50 % экспериментальных живот­ных). При этом учитывают вид животных, пол, массу тела, спо­соб заражения, срок гибели.

К факторам патогенности относят способность микроорганизмов прикрепляться к клеткам (адгезия), размещаться на их поверхности (колонизация), проникать в клетки (инвазия) и противостоять факторам защиты организма (агрессия).

Адгезия является пусковым механизмом инфекционного процесса. Под адгезией понимают способность микроорганизма адсорбироваться на чувствительных клетках с последующей колонизацией. Структуры, ответственные за связывание микроорганизма с клеткой называются адгезинами и располагаются они на его поверхности. Адгезины очень разнообразны по строению и обусловливают высокую специфичность — способность одних микроорганизмов прикрепляться к клеткам эпителия дыхательных путей, других — кишечного тракта или мочеполовой системы и т.д. На процесс адгезии могут влиять физико-химические механизмы, связанные с гидрофобностью микробных клеток, суммой энергии притяжения и отталкивания. У грамотрицательных бактерий адгезия происходит за счет пилей I и общего типов. У грамположительных бактерий адгезины представляют собой белки и тейхоевые кислоты клеточной стенки. У других микроорганизмов эту функцию выполняют различные структуры клеточной системы: поверхностные белки, липополисахариды, и др. Инвазия. Под инвазивностью понимают способность микробов проникать через слизистые, кожу, соединительно-тканные барьеры во внутреннюю среду организма и распространятся по его тканям и органам. Проникновение микроорганизма в клетку связывается с продукцией ферментов, а также с факторами подавляющими клеточную защиту. Так фермент гиалуронидаза расщепляет гиалуроновую кислоту, входящую в состав межклеточного вещества, и, таким образом, повышает проницаемость слизистых оболочек и соединительной ткани. Нейраминидаза расщепляет нейраминовую кислоту, которая входит в состав поверхностных рецепторов клеток слизистых оболочек, что способствует проникновению возбудителя в ткани. Агрессия. Под агрессивностью понимают способность возбудителя противостоять защитным факторам макроорганизма. К факторам агрессии относятся: протеазы — ферменты, разрушающие иммуноглобулины; коагулаза — фермент, свертывающий плазму крови; фибринолизин — растворяющий сгусток фибрина; лецитиназа — фермент, действующий на фосфолипиды мембран мышечных волокон, эритроцитов и других клеток. Патогенность может быть связана и с другими ферментами микроорганизмов, при этом они действуют как местно, так и генерализовано.

Важную роль в развитии инфекционного процесса играют токсины. По биологическим свойствам бактериальные токсины делятся на экзотоксины и эндотоксины. Экзотоксины продуцируют как грамположительные, так и грамотрицательные бактерии. По своей химической структуре это белки. По механизму действия экзотоксина на клетку различают несколько типов: цитотоксины, мембранотоксины, функциональные блокаторы, эксфолианты и эритрогемины. Механизм действия белковых токсинов сводится к повреждению жизненно важных процессов в клетке: повышение проницаемости мембран, блокады синтеза белка и других биохимических процессов в клетке или нарушении взаимодействия и взаимокоординации между клетками. Экзотоксины являются сильными антигенами, которые и продуцируют образование в организме антитоксинов.

Экзотоксины обладают высокой токсичностью. Под воздействием формалина и температуры экзотоксины утрачивают свою токсичность, но сохраняют иммуногенное свойство. Такие токсины получили название анатоксины и применяются для профилактики заболевания столбняка, гангрены, ботулизма, дифтерии, а также используются в виде антигенов для иммунизации животных с целью получения анатоксических сывороток. Эндотоксины по своей химической структуре являются липополисахаридами, которые содержатся в клеточной стенке грамотрицательных бактерий и выделяются в окружающую среду при лизисе бактерий. Эндотоксины не обладают специфичностью, термостабильны, менее токсичны, обладают слабой иммуногенностью. При поступлении в организм больших доз эндотоксины угнетают фагоцитоз, гранулоцитоз, моноцитоз, увеличивают проницаемость капилляров, оказывают разрушающее действие на клетки. Микробные липополисахариды разрушают лейкоциты крови, вызывают дегрануляцию тучных клеток с выделением вазодилататоров, активируют фактор Хагемана, что приводит к лейкопении, гипертермии, гипотонии, ацидозу, дессиминированной внутрисосудистой коагуляции (ДВК). Эндотоксины стимулируют синтез интерферонов, активируют систему комплемента по классическому пути, обладают аллергическими свойствами. При введении небольших доз эндотоксина повышается резистентность организма, усиливается фагоцитоз, стимулируются В-лимфоциты. Сыворотка животного иммунизированного эндотоксином обладает слабой антитоксической активностью и не нейтрализует эндотоксин. Патогенность бактерий контролируется тремя типами генов: гены — собственной хромосомами, гены привнесенные плазмидами умеренными фагами.

33 Роль факторов внешней среды (физических и социальных) в инфекционном процессе. Способы контроля репродукции и сохранения жизнедеятельности инфекционных агентов во внешней среде.

Роль факторов внешней среды – опосредованная.

Природные факторы:

-Температура

-Влажность

-Излучение (УФ и радиационное)

-Химические соединения

-Наличие очагов инфекционных заболеваний

-Стихийные бедствия

Социальные факторы:

-Уровень коммунального благоустройства и санитарной культуры

-Материальные возможности

-Условия быта

-Национальные обычаи

Под противомикробными мероприятиями понимают совокупность методов уничтожения, подавления жизнедеятельности и ограничения распространения во внешней среде потенциально патогенных для человека микроорганизмов с целью предупреждения развития и лечения инфекционных болезней.

Антисептика — способов уничтожения или подавления жизнедеятельности потенциально опасных для здоровья человека организмов на интактных или поврежденных коже, слизистых оболочках и в полостях с целью профилактики (профилактическая антисептика) и лечения (терапевтическая антисептика) инфекционных процессов.

Асептика — это совокупность противомикробных мероприятий, направленных на предупреждение развития инфекционного заболевания во время медицинских вмешательств или нарушений технологического процесса при микробиологических исследованиях и производстве различных материалов.

Дезинфекция — совокупность способов полного, частичного или селективного уничтожения потенциально патогенных для человека микроорганизмов на объектах внешней среды с целью предупреждения передачи возбудителей болезней от больных и микробоносителей здоровым людям.

Стерилизация — совокупность физических или химических способов полного освобождения объектов внешней среды от вегетативных и покоящихся форм патогенных, условнопатогенных и непатогенных микроорганизмов.

34.По природе возбудителя все инфекционные заболе­вания делятся на инфекиии: • на бактериальные;

• вирусные; грибковые; протозойные.

По числу возбудителей, вызывающих инфекционное заболевание,

они делятся:

• на моноинфекции; смешанные (ассоциированные) — микст-инфекции.

От последних надо отличать вторичную инфекцию, при которой к основной, первоначальной, уже развившейся, присоединяет­ся другая, вызываемая новым возбудителем; хотя в некоторых случаях вторичная инфекция может превышать, и значительно, первичную инфекцию. По длительности течения инфекиионные заболевания делятся:

• на острые;

• хронические.

По происхождению возбудителя:

экзогенные — инфекции, возбудителями которых являются микроорганизмы, поступающие из окружающей среды с пи­щей, водой, воздухом, почвой, выделениями больного человека или микробоносителя;

эндогенные — возбудителями являются микроорганизмы — представители собственной нормальной микрофлоры человека (часто возникают на фоне иммунодефицитного состояния че­ловека); в том числе аутоинфекция — разновидность эндоген­ной инфекции, которая возникает в результате саморазмноже­ния путем переноса возбудителя из одного биотопа в другой (например, из полости рта или носа руками самого больного на раневую поверхность).

1. Деление инфекций в зависимости от источника, т. е. резервуа­ра возбудителя, достаточно условно, однако по этому признаку можно выделить несколько групп:

сапронозные инфекции — заболевания, основным местом обита­ния и размножения возбудителей которых являются объекты окружающей среды, откуда и попадают в организм человека (заболевания, вызванные легионеллами, синегнойной палоч­кой и др.);

антропонозные инфекции — заболевания, при которых единствен­ный источник возбудителя — человек (менингококковая инфекция, дизентерия, холера, дифтерия, сифилис, гепатит В, эпиде­мический сыпной тиф, эпидемический возвратный тиф и др.);

зоонозные инфекции — заболевания, при которых единственный источник возбудителя — животные (туляремия, бруцеллез, бе­шенство);

зооантропонозные инфекции — заболевания, при которых источ­ником являются животное и больной человек, в том числе тру­пы умерших (чума, сибирская язва, туберкулез, риккетсиозы).

3. По распространенности различают:

эндемические заболевания — регистрируются на строго опреде­ленных территориях); тесно связаны с ареалом (местом) обита­ния животных — хозяев и переносчиков. К ним можно отнести:

• эндемические риккетсиозы;

• клещевой возвратный тиф (боррелиоз);

• клещевые вирусные энцефалиты;

эпидемические заболевания — распространенные на различных территориях.

Кроме того, для характеристики распространенности того или иного инфекционного заболевания (число заболевших на 100 000 жителей) существуют следующие понятия:

«спорадическая заболеваемость» — когда регистрируются только единичные случаи заболевания,

«групповые вспышки» — ограниченные небольшим числом забо­левших,

«эпидемия» — число заболевших измеряется несколькими сот­нями или тысячами, т. е. может охватывать большое количест­во людей на большой территории (грипп, эпидемический вши­вый сыпной тиф),

«пандемия» — заболевание охватывает несколько стран и даже континентов. К наиболее широко известным относятся панде­мии холеры, чумы, гриппа, которые сопровождают человечест­во на всем протяжении его истории.

По тяжести течения все инфекционные заболевания делят: , на легкие;средней тяжести; тяжелые.

Степень тяжести инфекционного заболевания имеет прямую зависимость от вирулентности микроорганизма-возбудителя и

обратную зависимость от силы защитных механизмов макроор­ганизма.

Степень тяжести инфекционного заболевания также непосред­ственно связана с локализацией возбудителя в макроорганизме по этому критерию все инфекции делятся:

• на очаговые, при которых микроорганизмы локализуются в ме­стном очаге и не распространяются по организму (ангина, фу­рункулез);

генерализованные, при которых возбудитель распространяется по организму лимфогенным или гематогенным путем (сепсис). Наиболее тяжелой формой генерализованной инфекции явля­ется сепсис, который характеризуется размножением возбуди­теля в крови, как правило, тяжелым течением заболевания, так как почти всегда развивается на фоне резкого угнетения ос­новных механизмов защиты.

35 Понятие об источнике и механизмах передачи инфекции. Зоонозы, антропонозы, сапронозы.

Механизм передачи – эволюционно сложившийся процесс перемещения возбудителя из источника инфекции в восприимчивый организм, который обеспечивает сохранение возбудителя как биологического вида в природе.

Механизмы передачи:

— аэрозольный (через воздух)

— фекально-оральный:

а) алиментарный путь (пищевые продукты)

б) водный

в) контактно-бытовой

— трансмиссивный – через насекомых-переносчиков

— контактный: а) прямой контакт (например, половой)

б) непрямой (контактно-бытовой) – через объекты внешней среды

— трансплацентарный (вертикальный)

— парентеральный (инвазивными методами) — механизмом не является

В зависимости от источника инфекции выделяют:

ЗООНОЗЫ — группа инфекционных и паразитарных заболеваний, возбудители которых паразитируют в организме определенных видов животных, и для которых животные являются естественным резервуаром. Источником возбудителей инфекции (или инвазии) для человека является больное животное или животное — носитель возбудителей. При определенных условиях (санитарно-экономических) возможно передача зоонозов людям. Но циркулировать в коллективах людей возбудители зоонозов не могут, так как человек для них является биологическим тупиком, не включается в течение эпизоотического процесса и не участвует в эволюции возбудителя как паразитического вида. Лишь при некоторых зоонозах, например при чуме, жёлтой лихорадке, в определенных условиях источником возбудителей инфекции может быть больной человек.

АНТРОПОНОЗЫ — группа инфекционных и паразитарных заболеваний, возбудители которых способны паразитировать в естественных условиях только в организме человека.

Источником возбудителей инфекции при антропонозах являются только люди — больные или носители возбудителей инфекции (или инвазии); при некоторых антропонозах (например, при кори, ветряной оспе) источником возбудителей инфекции является только больной человек.

САПРОНОЗЫ — группа инфекционных заболеваний, для возбудителей которых главным естественным местом обитания являются абиотические (неживые) объекты окружающей среды. Этим данная группа отличается от прочих заразных болезней, для возбудителей которых главным естественным местом обитания служит заражённый организм человека (антропонозы) или животного (зоонозы).

Хотя среди сапронозов известны инфекции, при которых возможно выделение возбудителя из заражённого организма (например, при болезни легионеров), однако, как правило, такое выделение не имеет значения для сохранения возбудителя в природе и не играет существенной эпидемиологической роли. Обитающие в окружающей среде возбудители сапронозов, только тогда обретают эпидемиологическое значение, когда появляется возможность передачи их из естественных мест обитания человеку и становится возможным переход от сапрофитического к паразитическому способу их существования.

36 Биологический (экспериментальный) метод исследованияБиологический метод исследования — совокупность способов искусственного воспроизведения клинической картины инфекционных болезней или их синдромов на лабораторных животных. Этот метод преcледует также ряд других целей:

  1. Диагностика инфекционных болезней.

2. Выделение и идентификация чистой культуры.

3. Определение вирулентности.

4. Выделение и идентификация экзотоксинов.

5. Культивирование вирусов.

6. Получение иммунопрепаратов.

7. Проверка безвредности и эффективности лечебных препаратов (в т.ч. химиопрепаратов, иммунопрепаратов) и другие.

Этапы метода:

1. Забор материала (виды материала см. Бактериоскопический метод),

2. Обработка материала.

3. Выбор лабораторного животного, исходя из его чувствительности к предполагаемому возбудителю, его стандартизация и маркировка.

4. Заражение животных одним из способов (подкожный, внутрикожный, внутрибрюшинный, внутримышечный, интрацеребральный, внутривенный, в желудок, интраназальный и др.) в зависимости от тропизма микроба.

5. Регистрация признаков болезни зараженного животного или его смерти.

6. Прижизненный забор материала от животного и проведение бактериологического и серологического исследования, постановка аллергической пробы.

7. Вскрытие, изучение патологоанатомической и патоморфологической картины, протокольный посев органов павших или убитых животных (для выявления обсемененности и выделения чистой культуры). Приготовление мазков-отпечатков из внутренних органов.

8. Идентификация выделенной культуры.

9. Заключение по результатам исследования.

Оценка метода:

Метод высокочувствителен, может быть использован на ранних этапах

болезни, но не всегда доступен, дорог, длителен, небезопасен.

37 Химиотерапия — специфическое антимикробное, антипаразитар­ное лечение при помощи химических веществ. Эти вещества обла­дают важнейшим свойством — избирательностью действия против болезнетворных микроорганизмов в условиях макроорганизма.

Основоположником химиотерапии является немецкий химик, лауреат Нобелевской премии П.Эрлих, который установил, что химические вещества, содержащие мышьяк, губительно действу­ют на спирохеты и трипаносомы, и получил в 1910 г. первый химиотерапевтический препарат — сальварсан (соединение мы­шьяка, убивающее возбудителя, но безвредное для микроорга­низма).

В 1935 г. другой немецкий химик Г.Домагк обнаружил среди анилиновых красителей вещество — пронтозил, или красный стрептоцид, спасавший экспериментальных животных от стрепто­кокковой инфекции, но не действующий на эти бактерии вне организма. За это открытие Г.Домагк был удостоен Нобелевс­кой премии. Позднее было выяснено, что в организме происхо­дит распад пронтозила с образованием сульфаниламида, обла­дающего антибактериальной активностью как in vivo, так и in vitro.

Механизм действия сульфаниламидов (сульфонамидов) на микроорганизмы был открыт Р.Вудсом, установившим, что суль­фаниламиды являются структурными аналогами парааминобензойной кислоты (ПАБК), участвующей в биосинтезе фолиевой кислоты, необходимой для жизнедеятельности бактерий. Бакте­рии, используя сульфаниламид вместо ПАБК, погибают.

Первый природный антибиотик был открыт в 1929 г. англий­ским бактериологом А.Флемингом. При изучении плесневого гри­ба Penicillium notatum, препятствующего росту бактериальной культуры, А. Флеминг обнаружил вещество, задерживающее рост бактерий, и назвал его пенициллином. В 1940 г. Г. Флори и Э. Чейн получили очищенный пенициллин. В 1945 г. А Флеминг, Г. Флори и Э. Чейн стали Нобелевскими лауреатами.

В настоящее время имеется огромное количество химиотерапевтических препаратов, которые применяются для лечения за­болеваний, вызванных различными микроорганизмами.

1. По химическому строению выделяют несколько групп химиоте­рапевтических препаратов.

Производные мышьяка, сурьмы и висмута это группа химио­терапевтических веществ ~ производных соответствующих со­единений.

Эти соединения были первыми препаратами для этиотропной терапии и применялись для лечения паразитарных инфекций (сонная болезнь) и сифилиса.

В настоящее время они практически не используются, хотя эта группа по-прежнему вполне может успешно применяться для местной терапии многих заболеваний.

2. Сульфаниламиды к этой группе относятся многочисленные производные сульфаниловой кислоты. Они были открыты и ис­пользуются с 30-х гг. XX в., но и к настоящему времени многие из них достаточно эффективны: сульфаметоксазол (гантанол);сульфаметизол (руфол); сульфацетамид (альбуцид);

• сульфадиметоксин (препарат пролонгированного действия) и др.

Механизм их действия состоит в том, что они представляют со­бой структурные аналоги парааминобензойной кислоты и на­рушают синтез фолиевой кислоты, а через него — синтез ДНК, т. е. являются микробными антиметаболитами: будучи близки по структуре, заменяют то или иное соединение, принимаю­щее участие в микробном метаболизме.

3. Диаминопиримидины — препараты этой группы также являются антиметаболитами. Но поскольку они подменяют пиримиди-новые основания, то и спектр их действия шире, чем у суль­фаниламидов. К ним относятся:триметоприм;пириметамин (антипротозойный препарат); тетроксоприм.

4. Нитрофурановые препараты — производные пятичленного гете­роциклического соединения — фурана. К ним относятся: фурациллин; фурагин; фуразолидон;нитрофурантоин (фурадонин);нитрофаразон;

Механизм их действия состоит в одновременной блокаде несколь­ких ферментных систем микробной клетки.

5. Хинолоны — группа химиотерапевтических веществ, полученных на основе:

• собственно хинолонов (препараты группы налидиксовой ки­слоты):

• налидиксовая кислота (неграм, невиграмон);

• циноксацин (цинобак);

• производных хинолонов:

• 4-аминохинолон (оксолипиевая кислота);

• 8-аминохинолон (нитроксолин- 5-НОК);

• фторхинолонов:

• офлоксацин (заноцин, таривид);

• норфлоксацин (норбактин);

• ципрофлоксацин (цифран, ципробай, ципролет);

• ломефлоксацин (максаквин).

Механизм действия хинолонов состоит в нарушении различных этапов (репликации, дупликации, транскрипции, репарации) синтеза ДНК микробной клетки.

38. Антибиотики — химиотерапевтические вещества, продуцируемые микроорганизмами, животными клетками, растениями, а также их производные и синтетические продукты, которые обладают избирательной спо­собностью угнетать и задерживать рост микроорганизмов, а также подавлять развитие злокачественных новообразований.

За тот период, который прошел со времени открытия П.Эрлиха, было получено более 10 000 различных антибиотиков, по­этому важной проблемой являлась систематизация этих препа­ратов. В настоящее время существуют различные классификации антибиотиков, однако ни одна из них не является общеприня­той.

В основу главной классификации антибиотиков положено их химическое строение.

Наиболее важными классами синтетических антибиотиков яв­ляются хинолоны и фторхинолоны (например, ципрофлоксацин), сульфаниламиды (сульфадиметоксин), имидазолы (метронидазол), нитрофураны (фурадонин, фурагин).

По спектру действия антибиотики делят на пять групп в зави­симости от того, на какие микроорганизмы они оказывают воз­действие. Кроме того, существуют противоопухолевые антибио­тики, продуцентами которых также являются актиномицеты. Каж­дая из этих групп включает две подгруппы: антибиотики широ­кого и узкого спектра действия.

Антибактериальные антибиотики составляют самую многочисленную группу препаратов. Преобладают в ней антиби­отики широкого спектра действия, оказывающие влияние на представителей всех трех отделов бактерий. К антибиотикам широкого спектра действия относятся аминогликозиды, тетрациклины и др. Антибиотики узкого спектра действия эффектив­ны в отношении небольшого круга бактерий, например полет-миксины действуют на грациликутные, ванкомицин влияет на грамположительные бактерии.

В отдельные группы выделяют противотуберкулезные, противолепрозные, противосифилитические препараты.

Противогрибковые антибиотики включают значитель­но меньшее число препаратов. Широким спектром действия об­ладает, например, амфотерицин В, эффективный при кандидозах, бластомикозах, аспергиллезах; в то же время нистатин, дей­ствующий на грибы рода Candida, является антибиотиком узко­го спектра действия.

Антипротозойные и антивирусные антибиотики на­считывают небольшое число препаратов.

Противоопухолевые антибиотики представлены препара­тами, обладающими цитотоксическим действием. Большинство из них применяют при многих видах опухолей, например митоми-цин С.

Действие антибиотиков на микроорганизмы связано с их спо­собностью подавлять те или иные биохимические реакции, про­исходящие в микробной клетке.

В зависимости от механизма дей­ствия различают пять групп антибиотиков:

1. антибиотики, нарушающие синтез клеточной стенки. К этой группе относятся, например, β-лактамы. Препараты этой груп­пы характеризуются самой высокой избирательностью дей­ствия: они убивают бактерии и не оказывают влияния на клет­ки микроорганизма, так как последние не имеют главного компонента клеточной стенки бактерий — пептидогликана. В связи с этим β -лактамные антибиотики являются наименее токсичными для макроорганизма;

2. антибиотики, нарушающие молекулярную организацию и синтез клеточных мембран. Примерами подоб­ных препаратов являются полимиксины, полиены;

3. антибиотики, нарушающие синтез белка; это наиболее многочисленная группа препаратов. Представителями этой группы являются аминогликозиды, тетрациклины, макроли-ды, левомицетин, вызывающие нарушение синтеза белка на разных уровнях;

4. антибиотики — ингибиторы синтеза нуклеиновых кислот. Например, хинолоны нарушают синтез ДНК, рифампицин — синтез РНК;

5. антибиотики, подавляющие синтез пуринов и аминокислот. К этой группе относятся, например, сульфаниламиды.

Источники антибиотиков.

Основными продуцентами природных ан­тибиотиков являются микроорганизмы, ко­торые, находясь в своей естественной среде (в основном, в почве), синтезируют антибио­тики в качестве средства выживания в борьбе за существование. Животные и растительные клетки также могут вырабатывать некото­рые вещества с селективным антимикробным действием (например, фитонциды), однако широкого применения в медицине в качестве продуцентов антибиотиков они не получили.

Таким образом, основными источниками получения природных и полусинтетических антибиотиков стали:

Актиномицеты (особенно стрептомицеты) — ветвящиеся бактерии. Они синтезиру­ют большинство природных антибиотиков (80 %).

Плесневые грибы — синтезируют природ­ные бета-лактамы (грибы рода Cephalosporium и Penicillium)H фузидиевую кислоту.

Типичные бактерии — например, эубактерии, бациллы, псевдомонады — продуцируют бацитрацин, полимиксины и другие вещества, обладающие антибактериальным действием.

Способы получения.

Существует три основных способа получе­ния антибиотиков:

биологический синтез (так получают при­родные антибиотики — натуральные продук­ты ферментации, когда в оптимальных ус­ловиях культивируют микробы-продуценты, которые выделяют антибиотики в процессе своей жизнедеятельности);

биосинтез с последующими химическими модификациями (так создают полусинтетичес­кие антибиотики). Сначала путем биосинтеза получают природный антибиотик, а затем его первоначальную молекулу видоизменяют путем химических модификаций, например присо­единяют определенные радикалы, в результате чего улучшаются противомикробные и фарма­кологические характеристики препарата;

химический синтез (так получают синте­тические аналоги природных антибиотиков, например хлорамфеникол/левомицетин). Это вещества, которые имеют такую же структуру,

39 Осложнение химиотерапии со стороны микроорганизмов прояв­ляется развитием лекарственной устойчивости.

В настоящее время лекарственная устойчивость микроорга­низмов — возбудителей различных заболеваний — не только чисто микробиологическая, но и огромная государственная проблема (например, смертность детей от стафилококкового сепсиса находится в настоящее время примерно на том же вы­соком уровне, что и до появления антибиотиков). Это связано с тем, что среди стафилококков — возбудителей различных гнойно-воспалительных заболеваний — довольно часто выде­ляются штаммы, одновременно устойчивые ко многим препара­там (5—10 и более).

Среди микроорганизмов — возбудителей острых кишечных инфекций до 80% выделяемых возбудителей дизентерии устой­чивы ко многим используемым антибиотикам.

В основе развития лекарственной устойчивости к антибиоти­кам и другим химиотерапевтическим препаратам лежат мутации хромосомных генов или приобретение плазмид лекарственной устойчивости.

Существуют роды и семейства микроорганизмов, природно-устойчивыё к отдельным антибиотикам; в их геноме есть гены, контролирующие этот признак. Для рода ацинетобактер, на­пример, устойчивость к пенициллину является таксономиче­ским признаком. Полирезистентны к антибиотикам и многие представители псевдомонад, неклостридиальных анаэробов и другие микроорганизмы.

Такие бактерии являются природными банками (хранилища­ми) генов лекарственной устойчивости.

Как известно, мутации, в том числе по признаку лекарствен­ной устойчивости, спонтанны и возникают всегда. В период массового применения антибиотиков в медицине, ветеринарии и растениеводстве микроорганизмы практически живут в сре­де, содержащей антибиотики, которые становятся селективным фактором, способствующим отбору устойчивых мутантов, по­лучающим определенные преимущества.

Плазмидная устойчивость приобретается микробными клетка­ми в результате процессов генетического обмена. Сравнитель­но высокая частота передачи R-плазмид обеспечивает широкое и достаточно быстрое распространение устойчивых бактерий в популяции, а селективное давление антибиотиков — отбор и закрепление их в биоценозах.

Плазмидная устойчивость может быть множественной, т. е. к нескольким лекарственным препаратам, и при этом достигать достаточно высокого уровня.

2. Биохимическую основу резистентности обеспечивают разные механизмы:

энзиматическая инактивация антибиотиков — осуществляется с помощью синтезируемых бактериями ферментов, разрушаю­щих активную часть антибиотиков. Одним из таких широко известных ферментов является бета-лактамаза, обеспечиваю­щая устойчивость микроорганизмов к бета-лактамным анти­биотикам за счет прямого расщепления бета-лактамного кольца этих препаратов. Другие ферменты способны не расщеплять, а модифицировать активную часть молекулы антибиотиков, как это имеет место при энзиматической инактивации аминогли-козидов и левомицетина;

изменение проницаемости клеточной стенки для антибиотика или подавление его транспорта в бактериальные клетки. Этот механизм лежит в основе устойчивости к тетрациклину,

изменение структуры компонентов микробной клетки, например изменение структуры бактериальных рибосом, сопровождается повышением устойчивости к аминогликозидам и макролидам, а изменение структуры РНК-синтетаз — к рифампицину.

У бактерий одного и того же вида могут реализовываться не­сколько механизмов резистентности.

В то же время развитие того или другого типа резистентности определяется не только свойствами бактерий, но и химической структурой антибиотика.

Так, цефалоспорины 1-го поколения устойчивы к действию стафило­кокковых бета-лактамаз, но разрушаются бета-лактамазами грамот-(рицательных микроорганизмов, тогда как цефалоспорины 4-го поко­ления и имипинемы высокоустойчивы к действию бета-лактамаз и 1грамположительных, и грамотрицательных микроорганизмов.

3. Для борьбы с лекарственной устойчивостью, т. е. для преодоле­ния резистентности микроорганизмов к химиопрепаратам, cyществует несколько путей:

• в первую очередь — соблюдение принципов рациональной химио­терапии;

создание новых химиотерапевтических средств, отличающихся механизмом антимикробного действия (например созданная в последнее время группа химиопрепаратов — фторхинолоны) и мишенями;

постоянная ротация (замена) используемых в данном лечебном учреждении или на определенной территории химиопрепара­тов (антибиотиков);

комбинированное применение бета-лактамных антибиотиков со­вместно с ингибиторами бета-лактамаз (клавулановая кислота, сульбактам, тазобактам).

40.Для определения чувствительности бак­терий к антибиотикам (антибиотикограммы) обычно применяют:

Метод диффузии в агар. На агаризованную питательную среду засевают исследуемый микроб, а затем вносят антибиотики. Обычно препараты вносят или в специальные лунки в агаре, или на поверхности посева раскла­дывают диски с антибиотиками («метод дис­ков»). Учет результатов проводят через сутки по наличию или отсутствию роста микробов вокруг лунок (дисков). Метод дисков — качес­твенный и позволяет оценить, чувствителен или устойчив микроб к препарату.

Методы определения минимальных ингибирующих и бактерицидных концентраций, т. е. минимального уровня антибиотика, кото­рый позволяет in vitro предотвратить видимый рост микробов в питательной среде или пол­ностью ее стерилизует. Это количественные методы, которые позволяют рассчитать дозу препарата, так как концентрация антибиоти­ка в крови должна быть значительно выше ми­нимальной ингибирующей концентрации для возбудителя инфекции. Введение адекватных доз препарата необходимо для эффективного лечения и профилактики формирования ус­тойчивых микробов.

Есть ускоренные способы, с применением автоматических анализаторов.

Определение чувствительности бактерий к антибиотикам методом дисков. Исследуемую бактериальную культуру засевают газоном на питательный агар или среду АГВ в чашке Петри.

Среда АГВ: сухой питательный рыбный бульон, агар-агар, натрий фосфат двузамещенный. Среду готовят из сухого порошка в соответствии с ин­струкцией.

На засеянную поверхность пинцетом помещают на одинако­вом расстоянии друг от друга бумажные диски, содержащие определенные дозы разных антибиотиков. Посевы инкубируют при 37 °С до следующего дня. По диаметру зон задержки роста исследуемой культуры бактерий судят о ее чув­ствительности к антибиотикам.

Для получения достоверных результатов необходимо приме­нять стандартные диски и питательные среды, для контроля которых используются эталонные штаммы соответствующих микроорганизмов. Метод дисков не дает надежных данных при определении чувствительности микроорганизмов к плохо диффундирующим в агар полипептидным антибиотикам (например, полимиксин, ристомицин). Если эти антибиотики предполагается использовать для лечения, рекомендуется определять чувстви­тельность микроорганизмов методом серийных разведений.

Определение чувствительности бактерий к антибиотикам методом серийных разведений. Данным методом определяют минимальную концентрацию антибиотика, ингибирующую рост исследуемой культуры бактерий. Вначале готовят основной раствор, содержащий определенную концентрацию антибиотика (мкг/мл или ЕД/мл) в специальном растворителе или буферном растворе. Из него готовят все последующие разведения в буль­оне (в объеме 1 мл), после чего к каждому разведению добав­ляют 0,1 мл исследуемой бактериальной суспензии, содержащей 106—107 бактериальных клеток в 1 мл. В последнюю пробирку вносят 1 мл бульона и 0,1 мл суспензии бактерий (контроль культуры). Посевы инкубируют при 37 °С до следующего дня, после чего отмечают результаты опыта по помутнению питатель­ной среды, сравнивая с контролем культуры. Последняя про­бирка с прозрачной питательной средой указывает на задержку роста исследуемой культуры бактерий под влиянием содержа­щейся в ней минимальной ингибирующей концентрации (МИК) антибиотика.

Оценку результатов определения чувствительности микро­организмов к антибиотикам проводят по специальной готовой таблице, которая содержит пограничные значения диаметров зон задержки роста для устойчивых, умеренно устойчивых и чувствительных штам­мов, а также значения МИК антибиотиков для устойчивых и чувствительных штаммов.

К чувствительным относятся штаммы микроорганизмов, рост которых подавляется при концентрациях препарата, обнаружи­ваемых в сыворотке крови больного при использовании обычных доз антибиотиков. К умеренно устойчивым относятся штаммы, для подавления роста которых требуются концентрации, созда­ющиеся в сыворотке крови при введении максимальных доз препарата. Устойчивыми являются микроорганизмы, рост кото­рых не подавляется препаратом в концентрациях, создаваемых в организме при использовании максимально допустимых доз.

Определение антибиотика в крови, моче и других жидкостях организма человека. В штатив устанавливают два ряда проби­рок. В одном из них готовят разведения эталонного антибиотика, в другом — исследуемой жидкости. Затем в каждую пробирку вносят взвесь тест-бактерий, приготовленную в среде Гисса с глюкозой. При определении в исследуемой жидкости пеницил­лина, тетрациклинов, эритромицина в качестве тест-бактерий используют стандартный штамм S. aureus, а при определении стрептомицина — Е. coli. После инкубирования посевов при 37 °С в течение 18—20 ч отмечают результаты опыта по помутнению среды и ее окрашиванию индикатором вследствие расщепления глюкозы тест-бактериями. Концентрация антибиотика опреде­ляется умножением наибольшего разведения исследуемой жид­кости, задерживающей рост тест-бактерий, на минимальную концентрацию эталонного антибиотика, задерживающего рост тех же тест-бактерий. Например, если максимальное разведение исследуемой жидкости, задерживающее рост тест-бактерий, рав­но 1 :1024, а минимальная концентрация эталонного антибио­тика, задерживающего рост тех же тест-бактерий, 0,313 мкг/мл, то произведение 1024- 0,313=320 мкг/мл составляет концен­трацию антибиотика в 1 мл.

Определение способности S. aureus продуцировать бета-лактамазу. В колбу с 0,5 мл суточной бульонной культуры стандарт­ного штамма стафилококка, чувствительного к пенициллину, вносят 20 мл расплавленного и охлажденного до 45 °С питатель­ного агара, перемешивают и выливают в чашку Петри. После застывания агара в центр чашки на поверхность среды поме­щают диск, содержащий пенициллин. По радиусам диска петлей засевают исследуемые культуры. Посевы инкубируют при 37 °С до следующего дня, после чего отмечают результаты опыта. О способности исследуемых бактерий продуцировать бета-лакта-мазу судят по наличию роста стандартного штамма стафило­кокка вокруг той или другой исследуемой культуры (вокруг диска).

41. Иммунология – наука о закономерностях иммунологической реактивности организма, о способах и методах использования иммунологических явлений в диагностике, лечении и профилактике инфекционных и неинфекционных болезней.

Задачи иммунологии:

А) Изучение строения, функций и развития иммунной системы в норме и при патологии.

Б) Изучение роли и значения иммунной системы в возникновении, развитии и течении инфекционных и неинфекционных заболеваний.

В) Разработка методов и средств иммунодиагностики, иммунотерапии и иммунопрофилактики инфекционных и неинфекционных заболеваний.

Г) Подготовка и переподготовка врачей-иммунологов.

Методы иммунологии.

  • Иммуноморфологический.

  • Иммунохимический.

  • Иммунобиологические:

а) серологические

б) аллергологические

  • Экспериментальный

  • Иммунология (иммун[итет]+ греч. logos учение) — медико-биологическая наука о защитных свойствах организма, его иммунитете. Изучает молекулярные, клеточные и физиологические реакции организма на антигены микроорганизмов и продукты животного или растительного происхождения, обладающие антигенными свойствами.

  •     Важнейшими разделами И. являются иммуногенетика (изучает генетическую обусловленность факторов иммунитета, внутривидовое разнообразие и наследование тканевых антигенов, генетические и популяционные аспекты взаимоотношений макро- и микроорганизма и тканевую несовместимость), иммунохимия (изучает химические основы иммунитета), иммунопатология. Выделяют также иммунобиологию (теоретическое направление в И., изучающее общебиологические основы иммунитета, его происхождение и эволюцию), И. эмбриогенеза (раздел И. и эмбриологии, исследующий процессы становления анти генной структуры тканей и органов в ходе эмбрионального развития и иммунологические взаимоотношения организма матери и плода), радиационную И. (изучает изменения иммунитета под влиянием ионизирующих излучений), сравнительную И. (исследует иммунный ответ у разных видов животных) и др.

  •     В клинической И. (иммунопатологии) также выделяют ряд разделов и направлений — инфекционную И., неинфекционную И., иммунофармакологию и др. Иммунология связана с биологией (микробиологией, молекулярной биологией, генетикой, эмбриологией), эндокринологией, патофизиологией, инфекционными болезнями, онкологией, гематологией (иммуногематология), эпидемиологией и другими дисциплинами.

  •     Основные проблемы и направления исследований в И. — аллергия,аутоиммунные болезни, И. злокачественных опухолей, трансплантационный иммунитет и иммунологическая толерантность (иммунные реакции реципиента на трансплантат), врожденные и приобретенные формы иммунологической недостаточности, СПИД и др. Клиническая иммунология разрабатывает методы иммунопрофилактики (см. Иммунизация), иммунодиагностики, иммунотерапии.

  •     Иммунологические методы, благодаря их уникальной специфичности и высокой чувствительности, широко применяются в биологии и медицине, в т.ч. при идентификации вирусов и бактерий, при установлении природы аллергенов, при переливании крови, трансплантации органов. В судебной медицине иммунологические методы используют для исследования вещественных доказательств, решения вопросов о спорном отцовстве, материнстве, в антропологии для решения проблем эволюции человеческих рас, их связей и происхождения.

  • 42. Структура иммунной системы. Иммунная система представлена лимфоидной тканью. Это спе­циализированная, анатомически обособленная ткань, разбросан­ная по всему организму в виде различных лимфоидных образо­ваний. К лимфоидной ткани относятся вилочковая, или зобная, железа, костный мозг, селезенка, лимфатические узлы (группо­вые лимфатические фолликулы, или пейеровы бляшки, минда­лины, подмышечные, паховые и другие лимфатические образо­вания, разбросанные по всему организму), а также циркулиру­ющие в крови лимфоциты. Лимфоидная ткань состоит из ретикулярных клеток, составляющих остов ткани, и лимфо­цитов, находящихся между этими клетками. Основными функ­циональными клетками иммунной системы являются лимфоци­ты, подразделяющиеся на Т- и В-лимфоциты и их субпопуля­ции. Общее число лимфоцитов в человеческом организме дос­тигает 1012, а общая масса лимфоидной ткани составляет при­мерно 1—2 % от массы тела.

Лимфоидные органы делят на центральные (первичные) и периферические (вторичные).

Функции иммунной системы. Иммунная система выполняет функцию специфической зашиты от анти­генов, представ­ляющую собой лимфоидную ткань, способную комплексом клеточных и гуморальных реак­ций, осуществляемых с помощью набора иммунореагентов, нейтрализовать, обезвредить, удалить, разрушить генетически чужеродный антиген, попавший в организм извне или об­разовавшийся в самом организме.

Специфическая функция иммунной системы в обезвреживании антигенов дополняется ком­плексом механизмов и реакций неспецифичес­кого характера, направленных на обеспечение резистентности организма к воздействию любых чужеродных веществ, в том числе и антигенов.

Кооперация иммунокомпетентных клеток. Иммунная реакция организма может иметь различный характер, но всегда начинается с захвата антигена макрофагами крови и тканей или же со связывания со стромой лимфоидных органов. Нередко антиген адсорбируется также на клетках паренхиматозных органов. В макрофагах он может полностью разрушаться, но чаше подвергается лишь частичной деградации. В частности, большинство антигенов в лизосомах фагоцитов в печение часа подвергается ограниченной денатурации и протеолизу. Оставшиеся от них пептиды (как правило, два-три остатка аминокислот) комплексируются с экспрессированными на внешней мембране макрофагов молекулами МНС.

Макрофаги и все другие вспомогательные клетки, несущие на внешней мембране антигены, называются антигенпрезентирующими, именно благодаря им Т- и В-лимфоциты, выполняя функцию презентации, позволяют быстро распознавать антиген.

Иммунный ответ в виде антителообразования происходит при распознавании В-клетками антигена, который индуцирует их пролиферацию и дифференциацию в плазмоцит. Прямое воздействие на В-клетку без участия Т-клеток могут оказать только тимуснезависимые антигены. В этом случае В-клетки кооперируются с Т-хелперами и макрофагами. Кооперация на тимусза-висимый антиген начинается с его презентации на макрофаге Т-хелперу. В механизме этого распознавания ключевую роль имеют молекулы МНС, так как рецепторы Т-хелперов распознают номинальный антиген как комплекс в целом или же как модифицированные номинальным антигеном молекулы МНС, приобретшие чужеродность. Распознав антиген, Т-хелперы секретируют γ-интерферон, который активирует макрофаги и способствует уничтожению захваченных ими микроорганизмов. Хелперный эффект на В-клетки проявляется пролиферацией и дифференциацией их в плазмоциты. В распознавании антигена при клеточном характере иммунного ответа, кроме Т-хелперов, участвуют также Т-киллеры, которые обнаруживают антиген на тех антигенпрезентирующих клетках, где он комплексируется с молекулами МНС. Более того, Т-киллеры, обусловливающие цитолиз, способны распознавать не только трансформированный, но и нативный антиген. Приобретая способность вызывать цитолиз, Т-киллеры связываются с комплексом антиген + молекулы МНС класса 1 на клетках-мишенях; привлекают к месту соприкосновения с ними цитоплазма-тические гранулы; повреждают мембраны мишеней после экзоцитоза их содержимого.

В результате продуцируемые Т-киллерами лимфотоксины вызывают гибель всех трансформированных клеток организма, причем особенно чувствительны к нему клетки, зараженные вирусом. При этом наряду с лимфотоксином активированные Т-киллеры синтезируют интерферон, который препятствует проникновению вирусов в окружающие клетки и индуцирует в клетках образование рецепторов лимфотоксина, тем самым повышая их чувствительность к литическому действию Т-киллеров.

Кооперируясь в распознавании и элиминации антигенов, Т-хелперы и Т-киллеры не только активируют друг друга и своих предшественников, но и макрофагов. Те же, в свою очередь, стимулируют активность различных субпопуляций лимфоцитов.

Регуляция клеточного иммунного ответа, как и гуморального, осуществляется Т-супрессорами, которые воздействуют на пролиферацию цитотоксических и антигенпрезентирующих клеток.

Цитокины. Все процессы кооперативных взаимодействий им-мунокомпетентных клеток, независимо от характера иммунного ответа, обусловливаются особыми веществами с медиаторными свойствами, которые секретируются Т-хелперами, Т-киллерами, мононуклеарными фагоцитами и некоторыми другими клетками, участвующими в реализации клеточного иммунитета. Все их многообразие принято называть цитокинами. По структуре цитокины являются протеинами, а по эффекту действия — медиаторами. Вырабатываются они при иммунных реакциях и обладают потенциирующим и аддитивным действием; быстро синтезируясь, цитокины расходуются в короткие сроки. При угасании иммунной реакции синтез цитокинов прекращается.

Иммунокомпетентные клетки — клетки, способные специфически распознавать антиген и отвечать на него иммунной реакцией. Такими клетками являются Т- и В-лимфоциты (тимусзависимые и костномозговые лимфоциты), которые под влиянием чужеродных агентов дифференцируются в сенсибилизированный лимфоцит и плазматическую клетку.

Т-лимфоциты – это сложная по составу группа клеток, которая происходит от полипотентной стволовой клетки костного мозга, а созревает и дифференцируется в тимусе из предшественников. Т-лимфоциты разделяются на две субпопуляции: иммунорегуляторы и эффекторы. Задачу регуляции иммунного ответа выполняют Т-хелперы. Эффекторную функцияю осуществляют Т-киллеры и естественные киллеры. В орагнизме Т-лимфоциты обеспечивают клеточные формы иммунного ответа, определяют силу и продолжительность иммунной реакции.

B-лимфоциты – преимущественно эффекторные иммунокомпетентные клетки. Зрелые В-лимфоциты и их потомки – плазматические клетки являются антителопродуцентами. Их основными продуктами являются иммуноглобулины. В-лимфоциты участвуют в формировании гуморального иммунитета, В-клеточной иммунологической памяти и гиперчувствительности немедленного типа.

Макрофаги — клетки соединительной ткани, способные к активному захвату и перевариванию бактерий, остатков клеток и других чужеродных для организма частиц. Основная функция макрофагов сводится к борьбе с теми бактериями, вирусами и простейшими, которые могут существовать внутри клетки-хозяина, при помощи мощных бактерицидных механизмов. Роль макрофагов в иммунитете исключительно важна — они обеспечивают фагоцитоз, переработку и представление антигена T-клеткам.



Источник: studfile.net